NATIONAL STANDARD
OF COMPETENCY
FOR ARCHITECTS
2021
The National Standard of Competency for Architects (NSCA) identifies the skills, knowledge and capabilities required for the general practice of architecture in Australia.

Embedded within the practice of architecture is the recognition of Aboriginal and Torres Strait Islander Peoples’ ongoing connection and custodianship of Country, and the ethical responsibilities to the physical environment and the transition to a carbon-neutral built environment. These responsibilities are fundamental to architecture practice.

Architectural design – a creative endeavour combined with the capacity to realise and deliver built projects – is at the core of the profession of architecture. The NSCA sets out a clear roadmap for the development and assessment of competency at key milestones over the course of a career in architecture – from graduation, through the registration process, to ongoing practice after registration. This is inclusive of a range of practice models and career paths.

Professional competency is the synthesis of professional education, experience in practice, and the career-long maintenance and improvement of professional practice through continuing professional development. The NSCA acknowledges that the path to acquiring competency is not always linear, and that aspects of architecture require both learning in formal education settings and continued learning in architectural practice.

The three main components of the NSCA are Professional Capabilities, Competency Profiles and Units of Competency, which are assessed through associated Performance Criteria. These integrate to form a cohesive system that supports the development of professional competency over time.

The NSCA provides the benchmark for the Architects Accreditation Council of Australia assessment programs. The path to registration as an architect in Australia is reflected in the first two competency profiles, Graduate of Architecture and Candidate for Registration as an Architect. The Architect Post Registration competency profile reflects an architect’s compliance obligations in terms of Codes of Conduct and Continuing Professional Development requirements. These are the responsibility of State and Territory Architect Registration Boards.
PROFESSIONAL CAPABILITIES

Professional capabilities encapsulate the knowledge, skills and attributes that underpin professional education in architecture and practice as an architect in Australia.

The NSCA groups these into three core areas – Professionalism, Communication and Environmental Practice. These broad capabilities are relevant to all modes of architectural practice and inform the ongoing professional education of architects. They provide the umbrella for the Units of Competency and are reflected across the Performance Criteria as a whole.

Professionalism

Professionalism encompasses the capacity to understand and enact the role and responsibilities of architects within evolving architectural, social, cultural, ethical, legal, technical and business contexts. This includes understanding community values and obligations around equity, diversity, accessibility and inclusion, embedding these within the provision of architectural services, and understanding how they impact Country, colleagues, clients, stakeholders and broader communities. At its core, this capability involves maintaining and developing professional competency over the course of a career in architecture.

Communication

Communication capabilities encompass the ability to clearly convey and explain the roles and responsibilities of an architect, to coherently and respectfully communicate within workplace and project contexts, and to articulate the value an architect contributes.

Environmental Practice

Environmental practice capabilities encompass a holistic approach to creating and caring for living environments. This includes the ability to understand, analyse and assess the impacts of design decisions and delivery processes on the natural and built environment, to care for Country and community, to minimise carbon impact, and to support the transition to a carbon-neutral built environment.

COMPETENCY PROFILES

The NSCA maps the expectations of professional competency at three levels:

Graduate of architecture —

The level of competency required at completion of an accredited program of architecture in Australia or equivalent course of study.

Candidate for registration as an architect —

The level of competency required at the point of registration as an architect, following a minimum of two years of broad-based professional practice experience in architecture.

Architect post-registration —

The additional professional competencies required to comply with regulatory obligations, including Codes of Conduct, and to maintain professional competency and disciplinary knowledge commensurate with their practice.

(Note: this does not describe specialist activities within the profession of architecture.)

UNITS OF COMPETENCY

Four Units of Competency outline the required knowledge and skills involved in the practice of architecture.

Practice Management and Professional Conduct

This unit of competency encompasses a holistic understanding of the organisation of the profession, practice and business of architecture, with the objective of providing value through sustainable, timely and effective professional services in accordance with the ethical and legal obligations of an architect to clients, colleagues, employees and to broader communities.

Project Initiation and Conceptual Design

This unit of competency encompasses the intelligent, creative, iterative and culturally responsive processes of initiating a project and the early stages of design. This involves research, analysis and the exploration of approaches, design ideas and alternative solutions. It leads to a design concept that meets the client’s brief, respects Country and is capable of compliance with planning controls and construction codes.

Detailed Design and Construction Documentation

This unit of competency encompasses the process of developing the design through research, detailed assessment of options and the integration of technical solutions, value and cost control processes to maintain or enhance the design intent. The final design proposal is cohesive, fully described and resolved to achieve value and cost objectives, and compliance with planning controls and construction codes.

Design Delivery and Construction Phase Services

This unit of competency encompasses the provision of services to support project delivery through construction. This may occur through a variety of building procurement methods and construction contracts. The form of construction contract may establish different expectations and obligations upon the architect and may include contract administration services. Typically, all contract types include the timely and cost-effective management of design delivery, review and inspection processes.

PERFORMANCE CRITERIA

Performance Criteria describe discrete aspects of architectural practice and are organised under the Units of Competency. Each Unit has a corresponding set of criteria for each of the three competency profiles.

The NSCA does not prioritise any unit or performance criteria. The ordering of the performance criteria does not suppose a particular mode of practice or project type, nor is there any weighting applied to individual performance criteria in the NSCA.
PROFESSIONALISM

Professionalism encompasses the capacity to understand and enact the role and responsibilities of architects within evolving architectural, social, cultural, ethical, legal, technical and business contexts. This includes understanding community values and obligations around equity, diversity, accessibility and inclusion, embedding these within the provision of architectural services, and understanding how they impact Country, colleagues, clients, stakeholders and broader communities. At its core, this capability involves maintaining and developing professional competency over the course of a career in architecture.

This includes:

- Incorporating relevant disciplinary knowledge within the practice of architecture and the provision of architectural services. This encompasses an understanding of architectural history and theory, design precedents and approaches, building sciences and technology, environmental sciences, relevant behavioural and social sciences and other bodies of knowledge as appropriate.
- Understanding and using relevant legislation and statutory building requirements, regulations, standards and codes to all aspects of the provision of architectural services.
- Having the capacity to engage in collaborative practice in the context of interdisciplinary teams and the shared responsibility for coordination of services.
- Having the capacity to adapt and synthesise emergent knowledge in relation to architectural design, technologies, material selection and construction practices in the context of changing environments.
- Supporting and promoting accessible, fair and ethical business practices.
- Supporting and promoting healthy workplaces that are inclusive, safe and respectful.
- Developing a cultural awareness to enable the integration of the values of Country within architectural services. Where possible, partner in meaningful and respectful ways with Aboriginal and Torres Strait Islander Peoples who are local to the place and Country on which the project is located.
- Maintaining professional ethics in all aspects of architectural work, including in the workplace and on construction sites, in interactions with clients, consultants, authorities, stakeholders, builders and with the wider public.

COMMUNICATION

Communication capabilities encompass the ability to clearly convey and explain the roles and responsibilities of an architect, to coherently and respectfully communicate within workplace and project contexts, and to articulate the value an architect contributes.

This includes:

- Communicating in culturally responsive and respectful ways appropriate to the audience, and acknowledging the authorship of cultural knowledge in any work undertaken.
- Communicating consistently, unambiguously and in a timely manner with clients, project stakeholders, colleagues, collaborators, consultants, construction delivery teams and broader communities.
- Communicating effectively within project teams, including using appropriate means to convey relevant aspects of architectural design, documentation and services during design and construction.
- Communicating the value that architects bring to broader communities across a range of forums.

ENVIRONMENTAL PRACTICE

Environmental practice capabilities encompass a holistic approach to creating and caring for living environments. This includes the ability to understand, analyse and assess the impacts of design decisions and delivery processes on the natural and built environment, to care for Country and community, to minimise carbon impact, and to support the transition to a carbon-neutral built environment.

This includes:

- Minimising the impact on, and use of, limited natural resources, recognising their inherent value, and prioritising design for a circular economy and longevity.
- Demonstrating an ethical, service-oriented commitment to the responsible care for Country, the environment and regenerative design.
- Promoting health, integrating accessibility for all, and respecting the diversity of culture, gender and experience in our communities.
- Understanding and integrating relevant design principles and technological applications to support the transition to a carbon-neutral built environment.
PERFORMANCE CRITERIA FOR PRACTICE MANAGEMENT AND PROFESSIONAL CONDUCT

This unit of competency encompasses a holistic understanding of the organisation of the profession and business of architecture, with the objective of providing value through sustainable, timely and effective professional services in accordance with the ethical and legal obligations of an architect to clients, colleagues, employees and to broader communities.

<table>
<thead>
<tr>
<th>On graduation from an architecture program — a graduate will</th>
<th>At the point of registration — a candidate will</th>
<th>Post registration — an architect will</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand the regulatory requirements and obligations pertaining to practice as an architect, including professional codes of conduct and obligations for continuing professional development and professional indemnity insurance.</td>
<td>Demonstrate understanding of the regulatory requirements and obligations pertaining to practice as an architect, including legislation, professional codes of conduct, and obligations for continuing professional development and professional indemnity insurance.</td>
<td>Comply with the regulatory requirements and obligations pertaining to practice as an architect, including legislation, professional codes of conduct, obligations for continuing professional development and professional indemnity insurance.</td>
</tr>
<tr>
<td>Understand the role of quality assurance systems in facilitating efficient and timely delivery of architectural services.</td>
<td>Be able to identify practice resources and apply practice methods and quality assurance systems within an ethical practice management framework to comply with and facilitate efficient, consistent and timely delivery of architectural services.</td>
<td>Implement practice resources and apply ethical employment practice methods and quality assurance systems to facilitate efficient, consistent and timely delivery of architectural services.</td>
</tr>
<tr>
<td>Understand the principles of project planning, considering implications for Country, environmental sustainability, communities, stakeholders and project costs.</td>
<td>Demonstrate understanding of the principles of project planning, considering implications for Country, environmental sustainability, communities, stakeholders and project costs.</td>
<td>Apply principles of project planning, considering implications for Country, environmental sustainability, communities, stakeholders and project costs.</td>
</tr>
<tr>
<td>Understand appropriate processes for clear and consistent communication with clients and relevant stakeholders throughout a project, including obtaining approvals from clients and stakeholders.</td>
<td>Apply and follow processes for clear and consistent communication with clients and relevant stakeholders throughout the project, including obtaining approvals from clients and stakeholders.</td>
<td></td>
</tr>
<tr>
<td>Understand how to implement culturally responsive and meaningful engagement processes that respect the importance of Country and reciprocal relationships with Aboriginal and Torres Strait Islander Peoples across architectural services.</td>
<td>Be able to implement culturally responsive and meaningful engagement processes that respect the importance of Country and reciprocal relationships with Aboriginal and Torres Strait Islander Peoples across architectural services.</td>
<td></td>
</tr>
<tr>
<td>Understand contemporary and emerging building procurement methods. This involves identifying the most appropriate form of delivery for a project, including associated risks, mitigation and adaptation strategies, and understanding appropriate construction and consultant contracts and agreements.</td>
<td>Demonstrate understanding of contemporary and emerging building procurement methods. This involves identifying the most appropriate form of delivery for a project, including associated risks, mitigation and adaptation strategies, and integrating appropriate construction contracts and consultancy contracts and/or agreements.</td>
<td>Be able to apply contemporary and emerging building procurement methods. This involves identifying the most appropriate form of delivery for a project, including risks, mitigation and adaptation strategies, and integrating appropriate construction contracts and consultancy contracts and/or agreements.</td>
</tr>
<tr>
<td>Understand the whole life carbon implications of procurement methods, materials, components and construction systems.</td>
<td>Demonstrate understanding of the whole life carbon implications of procurement methods, materials, components and construction systems.</td>
<td></td>
</tr>
<tr>
<td>Understand how relevant building codes, standards and planning controls apply across architectural practice, including climate change implications, the principles of fire safety, and barriers to universal access.</td>
<td>Be able to assess, recommend and/or select an appropriate procurement process, with consideration for its impact on all phases of a project – including design, documentation and project delivery – and provide advice to the client in terms of the level of scope of service for consultants.</td>
<td></td>
</tr>
<tr>
<td>Have knowledge of documentation processes that facilitate project delivery appropriate to selected procurement processes.</td>
<td>Provide independent, culturally responsive and objective advice in accordance with relevant building codes, standards, technical specifications and guidelines, and planning regulations, including climate change implications, across all aspects of architectural practice.</td>
<td></td>
</tr>
<tr>
<td>Understand legal and ethical obligations relating to copyright, moral rights, authorship of cultural knowledge and intellectual property requirements across architectural services.</td>
<td>Be able to identify and apply strategies, programming and processes for documentation through all project stages to facilitate project delivery, as appropriate to selected procurement processes.</td>
<td></td>
</tr>
<tr>
<td>Understand risk management and mitigation principles and strategies – including safety in design, project risk, requirement for resilience from the impacts of climate change and appropriate insurances – across architectural services.</td>
<td>Be able to identify and apply construction services provisions and/or construction administration systems needed to fulfil all obligations appropriate to the procurement process in accordance with the terms of the agreement.</td>
<td></td>
</tr>
<tr>
<td>PC 1</td>
<td>PC 2</td>
<td>PC 3</td>
</tr>
</tbody>
</table>
PERFORMANCE CRITERIA FOR PROJECT INITIATION AND CONCEPTUAL DESIGN

This unit of competency encompasses the intelligent, creative, iterative and culturally responsive processes of initiating a project and the early stages of design. This involves research, analysis and the exploration of approaches, design ideas and alternative solutions. It leads to a design concept that meets the client’s brief, respects Country and is capable of compliance with planning controls and construction codes.

<table>
<thead>
<tr>
<th>On graduation from an architecture program</th>
<th>At the point of registration</th>
<th>Post registration</th>
</tr>
</thead>
<tbody>
<tr>
<td>— a graduate will</td>
<td>— a candidate will</td>
<td>— an architect will</td>
</tr>
</tbody>
</table>

PC 17
Have an understanding of Aboriginal and Torres Strait Islander Peoples’ aspirations to care for Country and how these inform architectural design.

PC 18
Be able to apply creative imagination, design precedents, research, emergent knowledge and critical evaluation in formulating and refining concept design options, including the exploration of three dimensional form and spatial quality.

PC 19
Understand the purpose of project feasibility assessments, including research of site constraints, opportunities and risks, and methods of determining preliminary cost analysis.

PC 20
Be able to identify, analyse and evaluate client project requirements and objectives using qualitative and quantitative methods and, where required by the terms of engagement, to assist cost estimators in determining project feasibility/viability.

PC 21
Be able to assess project budget and timeframe against project requirements and objectives, relevant legislation, statutory planning requirements, building codes and standards.

PC 22
Be able to prepare a return brief for approval by the client and relevant stakeholders in response to a client brief and any areas of deviation or non-compliance.

PC 23
Understand how to identify and evaluate project development options in response to a project brief – its objectives, budget, user intent and built purpose, risks and timeframe, including environmental sustainability considerations.

PC 24
Be able to prepare and analyse project development options in response to a project brief – its objectives, budget, user intent and built purpose, risk and timeframes, including environmental sustainability considerations.

PC 25
Be able to draw on knowledge from the history and theory of architecture as part of preliminary design research and when developing the conceptual design.

PC 26
Be able to undertake site, cultural and contextual analysis as part of preliminary design research.

PC 27
Understand how to embed the knowledge, worldviews and perspectives of Aboriginal and Torres Strait Islander Peoples, shared through engagement processes, into the conceptual design in a meaningful, respectful and appropriate way.

PC 28
Be able to draw on knowledge from building sciences and technology, environmental sciences and behavioural and social sciences as part of preliminary design research and when developing the conceptual design to optimise the performance of the project.

PC 29
Be able to develop and evaluate design options in terms of the heritage, cultural and community values embodied in the site, and in relation to project requirements.

PC 30
Be able to explore options for siting a project, including integrating information and analysis of relevant cultural, social and economic factors.

PC 31
Be able to identify, analyse and integrate information relevant to environmental sustainability – such as energy and water consumption, resources depletion, waste, embodied carbon and carbon emissions – over the lifecycle of a project.

PC 32
Be able to apply planning principles and statutory planning requirements to the site and conceptual design of the project.

PC 33
Be able to investigate, coordinate and integrate sustainable environmental systems – including water, thermal, lighting and acoustics – into the conceptual design.

PC 34
Communicate conceptual design proposals and associated information to client, stakeholders and communities using appropriate and culturally responsive methods appropriate to different audiences.

PC 35
Understand the operational and embodied carbon implications of chosen materials, components and systems.

Be able to assess operational and embodied carbon implications of materials, components, construction systems and supply chains (including transport) to achieve net zero whole life carbon when developing design concepts. This includes integrating relevant consultant expertise and advising on the impact of chosen materials, components and systems on carbon outcomes.
PERFORMANCE CRITERIA FOR DETAILED DESIGN AND CONSTRUCTION DOCUMENTATION

This unit of competency encompasses the process of developing the design through research, detailed assessment of options and the integration of technical solutions, value and cost control processes to maintain or enhance the design intent. The final design proposal is cohesive, fully described and resolved to achieve value and cost objectives, and compliance with planning controls and construction codes.

On graduation from an architecture program — a graduate will

PC 36 Be able to apply creative imagination, design precedents, emergent knowledge, critical evaluation and continued engagement with Aboriginal and Torres Strait Islander Peoples to produce a coherent project design. This should be resolved in terms of supporting health and wellbeing outcomes for Country, site planning, formal composition, spatial planning and circulation as appropriate to the project brief and all other factors affecting the project.

PC 37 Be able to produce timely, accurate, complete and comprehensible documentation of the design so that it can be constructed.

PC 38 Be able to work within budget and time constraints while maintaining the defined project design intent. This includes participating in value management processes where engaged to do so.

PC 39 Understand how the integration of material selection, structural and construction systems impacts on design outcomes.

PC 40 Be able to integrate the material selection, structural and construction systems established in the conceptual design into the detailed design and documentation.

PC 41 Be able to resolve and present a coherent detailed design solution within necessary timeframes to obtain client and stakeholder approvals.

PC 42 Be able to coordinate and integrate input from specialists and consultants into the detailed design and documentation.

PC 43 Be able to prepare planning applications that comply with planning regulations.

PC 44 Understand the roles and types of relevant consultants and suppliers as well as applicable construction terminology.

PC 45 Understand the processes for selecting materials, finishes, fittings, components and systems, based on consideration of quality and performance standards, the impact on Country and the environment, and the whole life carbon impact of the project.

PC 46 Understand the processes for producing project documentation that meets the requirements of the contract and procurement procedure and complies with regulatory controls, building standards, codes, and conditions of construction and planning approvals.

PC 47 Be able to complete and communicate on-time, accurate documents for relevant stakeholders, including drawings, models, specifications, schedules and construction documentation.

At the point of registration — a candidate will

PC 36

PC 37

PC 38

PC 39

PC 40

PC 41

PC 42

PC 43

PC 44

PC 45

PC 46

PC 47

Post registration — an architect will

PC 36

PC 37

PC 38

PC 39

PC 40

PC 41

PC 42

PC 43

PC 44

PC 45

PC 46

PC 47
PERFORMANCE CRITERIA FOR DESIGN DELIVERY AND CONSTRUCTION PHASE SERVICES

This unit of competency encompasses the provision of services to support the process of project execution through construction. This may occur through a variety of building procurement methods and construction contracts. The form of construction contract may establish different expectations and obligations upon the architect and may include contract administration services. Typically, all contract types include the timely and cost-effective management of design delivery, review and inspection processes.

<table>
<thead>
<tr>
<th>On graduation from an architecture program — a graduate will</th>
<th>At the point of registration — a candidate will</th>
<th>Post registration — an architect will</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC 48 Understand available procurement methods and their application to project delivery, considering relevant factors including project type, scale and coordination of contractors</td>
<td>Be able to select and implement project administration systems, based upon an assessment of the selected procurement method and its implications on project delivery.</td>
<td></td>
</tr>
<tr>
<td>PC 49 Be able to implement project team structures necessary to deliver a full suite of professional services or partial services appropriate to the selected procurement process.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC 50 Be able to continue engagement with relevant Aboriginal and Torres Strait Islander Peoples throughout all stages of the project and its delivery in a meaningful, respectful and appropriate way.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC 51 Understand the process of selecting qualified contractors in accordance with an agreed procurement method and construction contract.</td>
<td>Be able to provide advice to clients and lead (or contribute to) the process of selecting a qualified contractor in accordance with the agreed procurement method and construction contract.</td>
<td></td>
</tr>
<tr>
<td>PC 52 Be able to apply the principles and mechanisms implicit in the selected procurement method and associated construction contract(s), based on an understanding of the implications of differing contractual relationships.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC 53</td>
<td></td>
<td>Be able to provide advice to clients on the impact of a selected procurement method on cost, time, life cycle implications and quality control during the construction phase.</td>
</tr>
<tr>
<td>PC 54 Understand the purpose of periodic site visits of construction works for quality assurance.</td>
<td>Be able to monitor construction progress and quality as required under the provisions of the construction contract, which may include site visits.</td>
<td></td>
</tr>
<tr>
<td>PC 55 Understand methodologies for record keeping, document control and revision status during the construction phase.</td>
<td>Be able to apply appropriate and consistent systems for record keeping, document control and revision status during the construction phase.</td>
<td></td>
</tr>
<tr>
<td>PC 56 Understand the purpose of identification of defects, rectifications and approval substitutions.</td>
<td>Be able to apply appropriate and consistent systems for identification of defects, rectifications and approval of substitutions.</td>
<td></td>
</tr>
<tr>
<td>PC 57 Understand the principles of contract administration, including certification, variations, instructions, requests for information and practical completion.</td>
<td>Be able to apply relevant processes required for certification of monetary progress claims, project variations, extensions of time, project instructions, and requests for information, practical completion or other administrative functions explicit in the selected procurement method and associated construction contract.</td>
<td></td>
</tr>
<tr>
<td>PC 58 Understand the contract components – including all documents – and the process of executing a contract, as defined within the construction contract and in accordance with relevant building and planning codes.</td>
<td>Complete documentation – including specifications, drawings, schedules, reports, certification and approvals – and other project information for issue to the client and relevant authorities, as required under the construction contract and relevant building and planning codes.</td>
<td></td>
</tr>
<tr>
<td>PC 59 Understand and mitigate risks associated with preparing and recording documentation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC 60 Apply appropriate methodologies for undertaking post occupancy evaluations and life cycle assessment where required under terms of engagement.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>